§ 192.150 Passage of internal inspection devices. - (a) Except as provided in paragraphs (b) and (c) of this section, each new transmission line and each line section of a transmission line where the line pipe, valve, fitting, or other line component is replaced must be designed and constructed to accommodate the passage of instrumented internal inspection devices. - (b) This section does not apply to: (1) Manifolds; - (2) Station piping such as at compressor stations, meter stations, or regulator stations: - (3) Piping associated with storage facilities, other than a continuous run of transmission line between a compressor station and storage facilities; - (4) Cross-overs: - (5) Sizes of pipe for which an instrumented internal inspection device is not commercially available; - (6) Transmission lines, operated in conjunction with a distribution system which are installed in Class 4 locations; - (7) Offshore pipelines, other than transmission lines 10 inches (254 millimeters) or greater in nominal diameter, that transport gas to onshore facilities; and - (8) Other piping that, under \$190.9 of this chapter, the Administrator finds in a particular case would be impracticable to design and construct to accommodate the passage of instrumented internal inspection devices. - (c) An operator encountering emergencies, construction time constraints or other unforeseen construction problems need not construct a new or replacement segment of a transmission line to meet paragraph (a) of this section, if the operator determines and documents why an impracticability prohibits compliance with paragraph (a) of this section. Within 30 days after discovering the emergency or construction problem the operator must petition, under §190.9 of this chapter, for approval that design and construction to accommodate passage of instrumented internal inspection devices would be impracticable. If the petition is denied, within 1 year after the date of the notice of the denial, the operator must modify that segment to allow passage of instrumented internal inspection devices. [Amdt. 192–72, 59 FR 17281, Apr. 12, 1994, as amended by Amdt. 192–85, 63 FR 37502, July 13, 1998] ## § 192.151 Tapping. - (a) Each mechanical fitting used to make a hot tap must be designed for at least the operating pressure of the pipeline. - (b) Where a ductile iron pipe is tapped, the extent of full-thread engagement and the need for the use of outside-sealing service connections, tapping saddles, or other fixtures must be determined by service conditions. - (c) Where a threaded tap is made in cast iron or ductile iron pipe, the diameter of the tapped hole may not be more than 25 percent of the nominal diameter of the pipe unless the pipe is reinforced, except that - (1) Existing taps may be used for replacement service, if they are free of cracks and have good threads; and - (2) A $1\frac{1}{4}$ -inch (32 millimeters) tap may be made in a 4-inch (102 millimeters) cast iron or ductile iron pipe, without reinforcement. However, in areas where climate, soil, and service conditions may create unusual external stresses on cast iron pipe, unreinforced taps may be used only on 6-inch (152 millimeters) or larger pipe. [35 FR 13257, Aug. 19, 1970, as amended by Amdt. 192–85, 63 FR 37502, July 13, 1998] # § 192.153 Components fabricated by welding. - (a) Except for branch connections and assemblies of standard pipe and fittings joined by circumferential welds, the design pressure of each component fabricated by welding, whose strength cannot be determined, must be established in accordance with paragraph UG-101 of section VIII, Division 1, of the ASME Boiler and Pressure Vessel Code. - (b) Each prefabricated unit that uses plate and longitudinal seams must be designed, constructed, and tested in accordance with section I, section VIII, Division 1, or section VIII, Division 2 of the ASME Boiler and Pressure Vessel Code, except for the following: #### § 192.155 - (1) Regularly manufactured butt-welding fittings. - (2) Pipe that has been produced and tested under a specification listed in appendix B to this part. - (3) Partial assemblies such as split rings or collars. - (4) Prefabricated units that the manufacturer certifies have been tested to at least twice the maximum pressure to which they will be subjected under the anticipated operating conditions. - (c) Orange-peel bull plugs and orange-peel swages may not be used on pipelines that are to operate at a hoop stress of 20 percent or more of the SMYS of the pipe. - (d) Except for flat closures designed in accordance with section VIII of the ASME Boiler and Pressure Code, flat closures and fish tails may not be used on pipe that either operates at 100 p.s.i. (689 kPa) gage, or more, or is more than 3 inches (76 millimeters) nominal diameter. [35 FR 13257, Aug. 19, 1970, as amended by Amdt. 192-1, 35 FR 17660, Nov. 17, 1970; 58 FR 14521, Mar. 18, 1993; Amdt. 192-68, 58 FR 45268, Aug. 27, 1993; Amdt. 192-85, 63 FR 37502, July 13, 1998] ### § 192.155 Welded branch connections. Each welded branch connection made to pipe in the form of a single connection, or in a header or manifold as a series of connections, must be designed to ensure that the strength of the pipeline system is not reduced, taking into account the stresses in the remaining pipe wall due to the opening in the pipe or header, the shear stresses produced by the pressure acting on the area of the branch opening, and any external loadings due to thermal movement, weight, and vibration. #### § 192.157 Extruded outlets. Each extruded outlet must be suitable for anticipated service conditions and must be at least equal to the design strength of the pipe and other fittings in the pipeline to which it is attached. ## § 192.159 Flexibility. Each pipeline must be designed with enough flexibility to prevent thermal expansion or contraction from causing excessive stresses in the pipe or components, excessive bending or unusual loads at joints, or undesirable forces or moments at points of connection to equipment, or at anchorage or guide points. ### § 192.161 Supports and anchors. - (a) Each pipeline and its associated equipment must have enough anchors or supports to: - (1) Prevent undue strain on connected equipment; - (2) Resist longitudinal forces caused by a bend or offset in the pipe; and - (3) Prevent or damp out excessive vibration. - (b) Each exposed pipeline must have enough supports or anchors to protect the exposed pipe joints from the maximum end force caused by internal pressure and any additional forces caused by temperature expansion or contraction or by the weight of the pipe and its contents. - (c) Each support or anchor on an exposed pipeline must be made of durable, noncombustible material and must be designed and installed as follows: - (1) Free expansion and contraction of the pipeline between supports or anchors may not be restricted. - (2) Provision must be made for the service conditions involved. - (3) Movement of the pipeline may not cause disengagement of the support equipment. - (d) Each support on an exposed pipeline operated at a stress level of 50 percent or more of SMYS must comply with the following: - (1) A structural support may not be welded directly to the pipe. - (2) The support must be provided by a member that completely encircles the pipe. - (3) If an encircling member is welded to a pipe, the weld must be continuous and cover the entire circumference. - (e) Each underground pipeline that is connected to a relatively unyielding line or other fixed object must have enough flexibility to provide for possible movement, or it must have an anchor that will limit the movement of the pipeline. - (f) Except for offshore pipelines, each underground pipeline that is being connected to new branches must have a firm foundation for both the header